Management of Cardiogenic Shock in Mitral Valve Diseases: A Review Article
Abstract
Despite advances in the field of cardiology, cardiogenic shock (CS) remains a management dilemma with a high mortality rate. While most cases of CS are secondary to acute coronary syndrome (ACS), approximately one-fifth can be attributed to delayed mechanical complications of ACS, such as arrhythmia, cardiac tamponade, or valvular heart diseases. The coexistence of CS and mitral valve diseases (MVDs) further complicates clinical presentation, diagnosis, and management strategies. Surgical interventions are considered the gold standard for managing MVDs in the context of CS. However, these patients are often at extreme surgical risk and may not achieve favorable outcomes. Catheter-based interventions have garnered increasing interest, but despite their promising results, most trials have excluded patients in unstable or critical conditions. Pharmacological and mechanical circulatory support provide a bridge to definitive transcatheter or surgical intervention.
Full text article
References
[1]. D. Kolte et al., “Trends in Incidence, Management, and Outcomes of Cardiogenic Shock Complicating ST?Elevation Myocardial Infarction in the United States,” Journal of the American Heart Association, vol. 3, no. 1, p. e000590, doi: 10.1161/JAHA.113.000590.
[2]. P. Lurz and C. Besler, “Mitral Regurgitation in Cardiogenic Shock,” JACC: Cardiovascular Interven-tions, vol. 14, no. 1, pp. 12–14, Jan. 2021, doi: 10.1016/j.jcin.2020.09.030.
[3]. E. Lüsebrink, S. Massberg, and M. Orban, “Ten things ICU specialists need to know about new valvular procedures in interventional cardiology,” Intensive Care Med, vol. 46, no. 1, pp. 102–106, Jan. 2020, doi: 10.1007/s00134-019-05824-6.
[4]. M. Enriquez-Sarano, C. W. Akins, and A. Vahanian, “Mitral regurgitation,” Lancet, vol. 373, no. 9672, pp. 1382–1394, Apr. 2009, doi: 10.1016/S0140-6736(09)60692-9.
[5]. S. Bernard, S. Deferm, and P. B. Bertrand, “Acute valvular emergencies,” European Heart Journal. Acute Cardiovascular Care, vol. 11, no. 8, pp. 653–665, Aug. 2022, doi: 10.1093/ehjacc/zuac086.
[6]. M. Akodad, G. Schurtz, J. Adda, F. Leclercq, and F. Roubille, “Management of valvulopathies with acute severe heart failure and cardiogenic shock,” Archives of Cardiovascular Diseases, vol. 112, no. 12, pp. 773–780, Dec. 2019, doi: 10.1016/j.acvd.2019.06.009.
[7]. P. Ponikowski et al., “2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC,” Eur Heart J, vol. 37, no. 27, pp. 2129–2200, Jul. 2016, doi: 10.1093/eurheartj/ehw128.
[8]. P. Shah and J. A. Cowger, “Cardiogenic shock,” Crit Care Clin, vol. 30, no. 3, pp. 391–412, Jul. 2014, doi: 10.1016/j.ccc.2014.03.001.
[9]. R. Kaddoura and S. Elbdri, “Current evidence in the diagnosis and management of cardiogenic shock complicating acute coronary syndrome,” RCM, vol. 22, no. 3, Art. no. 3, Sep. 2021, doi: 10.31083/j.rcm2203078.
[10]. C. Vahdatpour, D. Collins, and S. Goldberg, “Cardiogenic Shock,” Journal of the American Heart Asso-ciation, vol. 8, no. 8, p. e011991, Apr. 2019, doi: 10.1161/JAHA.119.011991.
[11]. “SCAI clinical expert consensus statement on the classification of cardiogenic shock - Baran - 2019 - Catheterization and Cardiovascular Interventions - Wiley Online Library.” Accessed: Oct. 20, 2024. [Online]. Available: https://onlinelibrary-wiley-com.qulib.idm.oclc.org/doi/full/10.1002/ccd.28329
[12]. S. S. Naidu et al., “SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incor-poration of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), Euro-pean Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International So-ciety for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Socie-ty of Thoracic Surgeons (STS) in December 2021.,” Journal of the Society for Cardiovascular Angi-ography & Interventions, vol. 1, no. 1, Jan. 2022, doi: 10.1016/j.jscai.2021.100008.
[13]. D. D. Backer et al., “Comparison of Dopamine and Norepinephrine in the Treatment of Shock,” New England Journal of Medicine, vol. 362, no. 9, pp. 779–789, Mar. 2010, doi: 10.1056/NEJMoa0907118.
[14]. B. Levy, P. Perez, J. Perny, C. Thivilier, and A. Gerard, “Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study,” Crit Care Med, vol. 39, no. 3, pp. 450–455, Mar. 2011, doi: 10.1097/CCM.0b013e3181ffe0eb.
[15]. B. Levy et al., “Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarc-tion,” J Am Coll Cardiol, vol. 72, no. 2, pp. 173–182, Jul. 2018, doi: 10.1016/j.jacc.2018.04.051.
[16]. M. J. García-González, A. Domínguez-Rodríguez, J. J. Ferrer-Hita, P. Abreu-González, and M. B. Muñoz, “Cardiogenic shock after primary percutaneous coronary intervention: Effects of levosimendan compared with dobutamine on haemodynamics,” Eur J Heart Fail, vol. 8, no. 7, pp. 723–728, Nov. 2006, doi: 10.1016/j.ejheart.2006.01.007.
[17]. J. T. Fuhrmann et al., “Levosimendan is superior to enoximone in refractory cardiogenic shock compli-cating acute myocardial infarction,” Crit Care Med, vol. 36, no. 8, pp. 2257–2266, Aug. 2008, doi: 10.1097/CCM.0b013e3181809846.
[18]. T. Husebye et al., “Levosimendan in acute heart failure following primary percutaneous coronary interven-tion-treated acute ST-elevation myocardial infarction. Results from the LEAF trial: a randomized, place-bo-controlled study,” Eur J Heart Fail, vol. 15, no. 5, pp. 565–572, May 2013, doi: 10.1093/eurjhf/hfs215.
[19]. “Milrinone as Compared with Dobutamine in the Treatment of Cardiogenic Shock | New England Journal of Medicine.” Accessed: Oct. 20, 2024. [Online]. Available: https://www-nejm-org.qulib.idm.oclc.org/doi/full/10.1056/NEJMoa2026845
[20]. “Vasopressors and Inotropes in Acute Myocardial Infarction Related Cardiogenic Shock: A Systematic Review and Meta-Analysis - PubMed.” Accessed: Oct. 20, 2024. [Online]. Available: https://pubmed-ncbi-nlm-nih-gov.qulib.idm.oclc.org/32629772/
[21]. R. Kaddoura et al., “Vasoactive pharmacologic therapy in cardiogenic shock: a critical review,” J Drug Assess, vol. 10, no. 1, pp. 68–85, 2021, doi: 10.1080/21556660.2021.1930548.
[22]. H. Thiele et al., “Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock,” New England Journal of Medicine, vol. 367, no. 14, pp. 1287–1296, Oct. 2012, doi: 10.1056/NEJMoa1208410.
[23]. “Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: the multicentre, randomised EURO SHOCK trial - PubMed.” Accessed: Oct. 20, 2024. [Online]. Available: https://pubmed-ncbi-nlm-nih-gov.qulib.idm.oclc.org/37334659/
[24]. H. Thiele et al., “Extracorporeal Life Support in Infarct-Related Cardiogenic Shock,” New England Jour-nal of Medicine, vol. 389, no. 14, pp. 1286–1297, Oct. 2023, doi: 10.1056/NEJMoa2307227.
[25]. M. Seyfarth et al., “A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction,” J Am Coll Cardiol, vol. 52, no. 19, pp. 1584–1588, Nov. 2008, doi: 10.1016/j.jacc.2008.05.065.
[26]. D. M. Ouweneel et al., “Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction,” J Am Coll Cardiol, vol. 69, no. 3, pp. 278–287, Jan. 2017, doi: 10.1016/j.jacc.2016.10.022.
[27]. J. E. Møller et al., “Microaxial Flow Pump or Standard Care in Infarct-Related Cardiogenic Shock,” New England Journal of Medicine, vol. 390, no. 15, pp. 1382–1393, Apr. 2024, doi: 10.1056/NEJMoa2312572.
[28]. V. T. Nkomo, J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano, “Burden of valvular heart diseases: a population-based study,” Lancet, vol. 368, no. 9540, pp. 1005–1011, Sep. 2006, doi: 10.1016/S0140-6736(06)69208-8.
[29]. S. Douedi and H. Douedi, “Mitral Regurgitation,” in StatPearls, Treasure Island (FL): StatPearls Pub-lishing, 2023. Accessed: Oct. 29, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK553135/
[30]. F. N. Delling and R. S. Vasan, “Epidemiology and Pathophysiology of Mitral Valve Prolapse,” Circula-tion, vol. 129, no. 21, pp. 2158–2170, May 2014, doi: 10.1161/CIRCULATIONAHA.113.006702.
[31]. “2021 ESC/EACTS Guidelines for the management of valvular heart disease | European Heart Journal | Oxford Academic.” Accessed: Oct. 20, 2024. [Online]. Available: https://academic-oup-com.qulib.idm.oclc.org/eurheartj/article/43/7/561/6358470
[32]. S. N. Shah and S. Sharma, “Mitral Stenosis,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. Accessed: Oct. 29, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK430742/
[33]. [C. R. Thompson et al., “Cardiogenic shock due to acute severe mitral regurgitation complicating acute myocardial infarction: a report from the SHOCK Trial Registry,” Journal of the American College of Cardiology, vol. 36, no. 3, Supplement 1, pp. 1104–1109, Sep. 2000, doi: 10.1016/S0735-1097(00)00846-9.
[34]. C. M. Otto et al., “2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Dis-ease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines,” Circulation, vol. 143, no. 5, pp. e72–e227, Feb. 2021, doi: 10.1161/CIR.0000000000000923.
[35]. Ananthakrishna Pillai, C. Ramasamy, S. G. V, and H. Kottyath, “Outcomes following balloon mitral valvuloplasty in pregnant females with mitral stenosis and significant sub valve disease with severe de-compensated heart failure,” J Interv Cardiol, vol. 31, no. 4, pp. 525–531, Aug. 2018, doi: 10.1111/joic.12507.
[36]. “Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation | New England Journal of Medicine.” Accessed: Oct. 20, 2024. [Online]. Available: https://www-nejm-org.qulib.idm.oclc.org/doi/full/10.1056/NEJMoa1805374
[37]. G. W. Stone et al., “Transcatheter Mitral-Valve Repair in Patients with Heart Failure,” New England Journal of Medicine, vol. 379, no. 24, pp. 2307–2318, Dec. 2018, doi: 10.1056/NEJMoa1806640.
[38]. R. Kaddoura and M. Al-Hijji, “Transcatheter Mitral Valve Repair in Acute and Critical Cardiac Condi-tions,” Heart Views?: The Official Journal of the Gulf Heart Association, vol. 24, no. 1, p. 29, Feb. 2023, doi: 10.4103/heartviews.heartviews_73_22.
[39]. Kosaraju, V. S. Pendela, and O. Hai, “Cardiogenic Shock,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. Accessed: Oct. 29, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK482255/
[40]. Y. Topilsky, “Mitral Regurgitation: Anatomy, Physiology, and Pathophysiology—Lessons Learned From Surgery and Cardiac Imaging,” Front Cardiovasc Med, vol. 7, p. 84, May 2020, doi: 10.3389/fcvm.2020.00084.
[41]. Shankar et al., “A Clinical Update on Vasoactive Medication in the Management of Cardiogenic Shock,” Clin Med Insights Cardiol, vol. 16, p. 11795468221075064, Feb. 2022, doi: 10.1177/11795468221075064.
[42]. Singh, S. Laribi, J. R. Teerlink, and A. Mebazaa, “Agents with vasodilator properties in acute heart fail-ure,” Eur Heart J, vol. 38, no. 5, pp. 317–325, Feb. 2017, doi: 10.1093/eurheartj/ehv755.
[43]. K. Uhlig et al., “Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome,” Cochrane Database Syst Rev, vol. 11, no. 11, p. CD009669, Nov. 2020, doi: 10.1002/14651858.CD009669.pub4.
[44]. A. den Uil et al., “Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: a systematic review and meta-analysis,” Eur J Cardi-othorac Surg, vol. 52, no. 1, pp. 14–25, Jul. 2017, doi: 10.1093/ejcts/ezx088.
[45]. J. L. Peura et al., “Recommendations for the use of mechanical circulatory support: Device strategies and patient selection: A scientific statement from the American heart association,” Circulation, vol. 126, no. 22, pp. 2648–2667, 2012, doi: 10.1161/CIR.0b013e3182769a54.
[46]. J. R. Kimman et al., “Mechanical Support in Early Cardiogenic Shock: What Is the Role of Intra-aortic Balloon Counterpulsation?,” Curr Heart Fail Rep, vol. 17, no. 5, pp. 247–260, Oct. 2020, doi: 10.1007/s11897-020-00480-0.
[47]. S. Imaoka et al., “Impella Support as a Bridge to Surgery for Severe Mitral Regurgitation With Cardio-genic Shock,” Circ Rep, vol. 3, no. 3, pp. 178–181, doi: 10.1253/circrep.CR-21-0016.
[48]. “Left Impella®-device as bridge from cardiogenic shock with acute, severe mitral regurgitation to Mitra-Clip®-procedure: a new option for critically ill patients - PubMed.” Accessed: Oct. 20, 2024. [Online]. Available: https://pubmed-ncbi-nlm-nih-gov.qulib.idm.oclc.org/33620436/
[49]. P. Villablanca et al., “Mechanical Circulatory Support in Cardiogenic Shock due to Structural Heart Dis-ease,” Interv Cardiol Clin, vol. 10, no. 2, pp. 221–234, Apr. 2021, doi: 10.1016/j.iccl.2020.12.007.
[50]. S. S. Goel et al., “Prevalence and outcomes of unoperated patients with severe symptomatic mitral regur-gitation and heart failure: comprehensive analysis to determine the potential role of MitraClip for this unmet need,” J Am Coll Cardiol, vol. 63, no. 2, pp. 185–186, Jan. 2014, doi: 10.1016/j.jacc.2013.08.723.
[51]. S. V. Arnold et al., “Health Status After Transcatheter Mitral-Valve Repair in Heart Fail-ure and Secondary Mitral Regurgitation: COAPT Trial,” Journal of the American College of Cardiology, vol. 73, no. 17, pp. 2123–2132, May 2019, doi: 10.1016/j.jacc.2019.02.010.
[52]. P. Kovach, S. Bell, A. Kataruka, M. Reisman, and C. Don, “Outcomes of urgent/emergent transcatheter mitral valve repair (MitraClip): A single center experience,” Catheter Cardiovasc Interv, vol. 97, no. 3, pp. E402–E410, Feb. 2021, doi: 10.1002/ccd.29084.
[53]. S. Aldrugh, N. Kakouros, and W. Qureshi, “National prevalence and outcomes of different mitral valve interventions for mitral regurgitation among patients with cardiogenic shock: an analysis of the national readmission database 2010–2018,” European Heart Journal, vol. 42, no. Supplement_1, p. ehab724.2212, Oct. 2021, doi: 10.1093/eurheartj/ehab724.2212.
[54]. C.-W. Lee et al., “Feasibility of the transcatheter mitral valve repair for patients with severe mitral regur-gitation and endangered heart failure,” Journal of the Formosan Medical Association, vol. 120, no. 1, Part 2, pp. 452–459, Jan. 2021, doi: 10.1016/j.jfma.2020.04.035.
[55]. R. Estévez-Loureiro et al., “Use of MitraClip for mitral valve repair in patients with acute mitral regurgi-tation following acute myocardial infarction: Effect of cardiogenic shock on outcomes (IREMMI Regis-try),” Catheter Cardiovasc Interv, vol. 97, no. 6, pp. 1259–1267, May 2021, doi: 10.1002/ccd.29552.
[56]. Haberman et al., “Safety and Feasibility of MitraClip Implantation in Patients with Acute Mitral Regur-gitation after Recent Myocardial Infarction and Severe Left Ventricle Dysfunction,” J Clin Med, vol. 10, no. 9, p. 1819, Apr. 2021, doi: 10.3390/jcm10091819.
[57]. K. Flint, A. Brieke, D. Wiktor, and J. Carroll, “Percutaneous edge-to-edge mitral valve repair may rescue select patients in cardiogenic shock: Findings from a single center case series,” Catheter Cardiovasc In-terv, vol. 94, no. 2, pp. E82–E87, Aug. 2019, doi: 10.1002/ccd.28089.
[58]. G. H. L. Tang, R. Estevez-Loureiro, Y. Yu, J. B. Prillinger, S. Zaid, and M. A. Psotka, “Survival Fol-lowing Edge-to-Edge Transcatheter Mitral Valve Repair in Patients With Cardiogenic Shock: A Nation-wide Analysis,” J Am Heart Assoc, vol. 10, no. 8, p. e019882, Apr. 2021, doi: 10.1161/JAHA.120.019882.
[59]. C.-Y. So et al., “Transcatheter Edge-to-Edge Repair for Acute Mitral Regurgitation With Cardiogenic Shock Secondary to Mechanical Complication,” Cardiovasc Revasc Med, vol. 45, pp. 44–50, Dec. 2022, doi: 10.1016/j.carrev.2022.07.003.
[60]. G. Falasconi et al., “Use of edge-to-edge percutaneous mitral valve repair for severe mitral regurgitation in cardiogenic shock: A multicenter observational experience (MITRA-SHOCK study),” Catheter Cardio-vasc Interv, vol. 98, no. 1, pp. E163–E170, Jul. 2021, doi: 10.1002/ccd.29683.
[61]. “Percutaneous Mitral Repair as Salvage Therapy in Patients With Mitral Regurgitation and Refractory Cardiogenic Shock - PubMed.” Accessed: Oct. 20, 2024. [Online]. Available: https://pubmed-ncbi-nlm-nih-gov.qulib.idm.oclc.org/31694413/
[62]. R. Cheng et al., “Percutaneous Mitral Repair for Patients in Cardiogenic Shock Requiring Inotropes and Temporary Mechanical Circulatory Support,” JACC Cardiovasc Interv, vol. 12, no. 23, pp. 2440–2441, Dec. 2019, doi: 10.1016/j.jcin.2019.05.042.
[63]. S. Garcia et al., “Percutaneous Mitral Valve Repair With MitraClip in Inoperable Patients With Severe Mitral Regurgitation Complicated by Cardiogenic Shock,” J Invasive Cardiol, vol. 32, no. 6, pp. 228–231, Jun. 2020.
[64]. R. G. Jung et al., “Transcatheter Mitral Valve Repair in Cardiogenic Shock and Mitral Regurgitation: A Patient-Level, Multicenter Analysis,” JACC Cardiovasc Interv, vol. 14, no. 1, pp. 1–11, Jan. 2021, doi: 10.1016/j.jcin.2020.08.037.
[65]. S. Parlow et al., “Transcatheter mitral valve repair for inotrope dependent cardiogenic shock - Design and rationale of the CAPITAL MINOS trial,” Am Heart J, vol. 254, pp. 81–87, Dec. 2022, doi: 10.1016/j.ahj.2022.08.008.
[66]. C. Fraccaro et al., “Transcatheter interventions for left-sided valvular heart disease complicated by cardio-genic shock: a consensus statement from the European Association of Percutaneous Cardiovascular Inter-ventions (EAPCI) in collaboration with the Association for Acute Cardiovascular Care (ACVC) and the ESC Working Group on Cardiovascular Surgery,” EuroIntervention, vol. 19, no. 8, pp. 634–651, Oct. 2023, doi: 10.4244/EIJ-D-23-00473.
[67]. S. A. Al-Asmi et al., “Transcatheter Mitral Valve Repair with MitraClip®: A Nationwide Experience,” Heart Views, vol. 24, no. 4, pp. 179–187, 2023, doi: 10.4103/heartviews.heartviews_90_23.
[68]. M. Orban et al., “Transcatheter edge-to-edge repair for secondary mitral regurgitation with third-generation devices in heart failure patients – results from the Global EXPAND Post-Market study,” European Jour-nal of Heart Failure, vol. 25, no. 3, pp. 411–421, 2023, doi: 10.1002/ejhf.2770.
[69]. R. S. von Bardeleben et al., “Real-World Outcomes of Fourth-Generation Mitral Transcatheter Repair: 30-Day Results From EXPAND G4,” JACC Cardiovasc Interv, vol. 16, no. 12, pp. 1463–1473, Jun. 2023, doi: 10.1016/j.jcin.2023.05.013.
[70]. B. Levy, J. Buzon, and A. Kimmoun, “Inotropes and vasopressors use in cardiogenic shock: when, which and how much?,” Current Opinion in Critical Care, vol. 25, no. 4, p. 384, Aug. 2019, doi: 10.1097/MCC.0000000000000632.
[71]. J. E. Bloom, W. Chan, D. M. Kaye, and D. Stub, “State of Shock: Contemporary Vasopressor and In-otrope Use in Cardiogenic Shock,” Journal of the American Heart Association, vol. 12, no. 15, p. e029787, Aug. 2023, doi: 10.1161/JAHA.123.029787.
[72]. V. Atti et al., “A Comprehensive Review of Mechanical Circulatory Support Devices,” Heart Int, vol. 16, no. 1, pp. 37–48, Mar. 2022, doi: 10.17925/HI.2022.16.1.37.
[73]. B. Worku, A. R. de Biasi, I. Gulkarov, S.-C. Wong, and A. Salemi, “Transapical Mitral Valve-In-Valve Implantation for Patients in Cardiogenic Shock,” The Annals of Thoracic Surgery, vol. 99, no. 5, pp. e103–e105, May 2015, doi: 10.1016/j.athoracsur.2015.01.046.
[74]. M. Litmanovitch, G. M. Joynt, J. Skoularigis, and J. Lipman, “Emergency percutaneous balloon mitral valvotomy in a patient with septic shock,” Chest, vol. 108, no. 2, pp. 570–572, Aug. 1995, doi: 10.1378/chest.108.2.570.
[75]. W. H. Chow and T. C. Chow, “Percutaneous balloon mitral valvotomy as a bridge to elective mitral valve replacement,” Cathet Cardiovasc Diagn, vol. 45, no. 1, p. 102, Sep. 1998, doi: 10.1002/(sici)1097-0304(199809)45:1<102::aid-ccd26>3.0.co;2-o.
[76]. J. S. Dugal, V. Jetley, J. S. Sabharwal, S. Sofat, and C. Singh, “Life-saving PTMC for critical calcific mitral stenosis in cardiogenic shock with balloon impasse,” Int J Cardiovasc Intervent, vol. 5, no. 3, pp. 172–174, 2003.
[77]. S. Strick et al., “[Emergent percutaneous mitral valve repair with Inoue balloon-catheter in severe mitral stenosis and cardiogenic shock],” Dtsch Med Wochenschr, vol. 119, no. 33, pp. 1110–1114, Aug. 1994, doi: 10.1055/s-2008-1058810.
[78]. M. Notrica et al., “Life-saving Percutaneous Mitral Valvuloplasty on a Pregnant Woman with Refractory Cardiogenic Shock,” Heart, Lung and Circulation, vol. 18, no. 4, pp. 301–304, Aug. 2009, doi: 10.1016/j.hlc.2007.12.008.
[79]. J. Endrys, A. G. Habashy, and N. Hayat, “Life-saving balloon mitral valvuloplasty in patient with cardi-ogenic shock after cardiac arrest,” J Invasive Cardiol, vol. 13, no. 11, pp. 752–754, Nov. 2001.
Authors
Copyright (c) 2024 Ashraf Ahmed, Mohamed Badheeb, Kayla Boyea, Rasha Kaddoura, Fabricio Webber, Todd Lane, Gilead Lancaster

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright / Open Access Policy: This journal provides immediate free open access and is distributed under the terms and conditions of the Creative Commons Attribution License (CC BY). This is an open-access journal which means readers can access it freely. Readers may read, download, copy, distribute, print, search, or link to the full texts of the articles for any lawful purpose without seeking prior permission from the publisher or author. This is consistent with the Budapest Open Access Initiative (BOAI) definition of open access.